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INTRODUCTION

The well-known theorem of Korovkin [3, 4] states that a sequence (7)) of
positive endomorphisms on %([0, 1]) converges to the identity operator
provided that lim,,,, 7,(g%) == gt fori == 0, 1, 2, where g € € ([0, 1]) denotes
the identity mapping. In recent years many generalizations of this result have
been given. The concept of a Korovkin closure (or shadow) turned out to be
an adequate tool for the solution of many problems arising in the context of
Korovkin theorems.

If £ and F are topological vector lattices in the terminology of Peressini [7]
or Schaefer [8] and if H is a subset of E, the Korovkin closure of H with
respect to a continuous linear lattice homomorphism S : £ — F is the set of
all x e E satisfying the following condition:

For each net (7)), of positive linear operators, (7,(x)),.; converges to
S(x) provided that lim;,; T(»y) == S(y) for all y e H.

We here also deal with sequences of positive linear operators as well as
with nets (and sequences) of continuous positive linear operators of E into F.
Since the Korovkin closures are clearly subspaces of E, w.l.o.g., H may be
assumed to be a vector subspace of E.

Based on a preceding publication [2] in this note a complete and simple
characterization of shadows is given for nets of positive and continuous
positive linear maps. Concerning sequences Korovkin closures are
characterized at least in the case where F is metrizable and H has a countable
algebraic basis.

While in [2] A was assumed to be cofinal in E, we do not need any addi-
tional assumption on A here. In fact, it turns out that, w.l.o.g., // may be
assumed to be cofinal in E. More precisely, the shadow is contained in the
linear lattice ideal generated by H.
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In contrast to [2] we here use a lemma on uniqueness of extensions of
isotone maps in order to obtain the description of Korovkin closures by so-
called (H, S)-affine elements. Surprisingly, this lemma is the common
background of many Korovkin theorems for positive linear operators.

NOTATIONS AND DEFINITIONS

(a) Let H be a subset of some set £ and let F be a Hausdorff topological
space. Suppose that .7 is a class! of nets of mappings from F into F. Given a
map S : E - F, the Korocvkin closure or shadow? HZ of H with respect to
7 and S is the set of all x € £ satisfying the following condition:

For each net (7;),o; €7 such that lim,., 7;( y) = S(y) for all y € H (T{x));es
converges to S(x).

(b) We do not try to attain utmost generality. Hence £ and F will aiways
assumed to be Hausdorff topological vector lattices. Moreover, we will only
deal with subclasses of the class 7 of all nets of positive linear operators of E
into F. Finally, throughout this note, S : E — F will always denote a con-
tinuous linear lattice homomorphism and H will be a flinear subspace of E.

(c) For each subclass 7 of %, .7 denotes the subset of all sequences in
g . #, is the subclass of # consisting of all nets of continuous positive
linear operators.

(d) Foreach xc E, we define H, :== {ye H:y > x} and

(note that H, and A* may be empty). Furthermore,
H,:—{infAd: o + ACH,, Afinite},

H*:={sup B: @ # BC H* B finite}. Obviously, H, is downward directed,
while H® is upward directed. An element x € E is called (H, S)-affine ift
H,# o, H* # ¢ and lim,.s_S(») = S(x) = lim,.g. S(»). The subset of
all (H, S)-affine elements in £ will be denoted by .24(H). The fundamental
importance of (H, S)-affine elements will become clear in the next section.

(e) For any set M B,(M) denotes the system of all finite nonempty subsets
of M. Note that 3,(M)is upward directed by inclusion!

LIf filters are used instead of nets, the introduction of classes can be avoided. Since,
however, the limit statements are easier to formulate with nets then with filters, we prefered
to use nets in the definition of Korovkin closures.

? Korovkin closures and shadows are distinct objects in [2]!
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1. UNIQUENESS OF EXTENSIONS OF ISOTONE MAPS

LEmMMA 1.1. Let M, N be two lattices and let G be a subset of E. If T, Q
are two isotone maps of M into N coinciding on G, then T = Q on

G =dxeM inf{T(y): yeG, v =x}=Tx) =sup{T(z): ze G, z <L x||.
Proof. Letxe%. Since
T(r) = O(y) = sup(T(x), O(x)) = inf(T(x), O(¥) = T(z) = O(2)
for all y, z € G satisfying y = x == z, it follows that
sup(7(x), Q(x)) = T(x) = Q(x) == inf(T(x), O(x)).
COROLLARY 1.2.  Each (H, S)-affine element of E is contained in HZ[2].
Proof®.  Let I be a directedly ordered set. If

Ky:={{x)eF: lin} x; = 0},
e

then K|, is an order-convex* linear sublattice of the product lattice F’. Hence
N := FI/K, is a lattice [5, p. 49]. Let ¢ : F/ — N be the quotient map. Given
a net (T}),.; € 2 (with index set I) we define S, T': E— N by setting

T(x) = g(T{x))se;) and S(x) = g((S{(x));e;), Where S, := S for all ic /.
Note that, for any x & E,
T(x) = S(x) iff lim T(x) = S(x).
Hence we derive from 1.1 :
{xe E:infS(H,) = inf S(H,) = S(x) = sup S(H=) = sup S(H*)} C H.

The proof will be complete, if we can show that .2Z(H) is contained in the set
on the left-hand side of the inclusion. To do this, let x € &/ (H), and suppose
that (z;) € F7 satisfies S(») = ¢((z,)) = S(x) for all ye H, . For each y € H,
there is a net (e, ,);; € K, such that S(p) > z; + e, , = S(x) for all iel
Consequently, if U, V are solid zero-neighborhoods in Fsatisfying V' 4 V C U,
¥V = —V, then there is an element ye A, and an index i, e such that

3 The construction used in this proof was first applied to Korovkin theorems by Scheffold
[t0, 91.

* A subset W of an ordered set U is called order-convex (see [5] for the terminology)
iff xeU and y < x < z for some y, ze W implies x € W.
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S(y)e V + S(x) (since xeZ(H)) and ¢, , €V for all i :i,. But this
implies that z, € S(x) + U for all i = i, or, since U was arbitrary, S(x) —
q((z,)). Hence, inf,.4 S(3) == S(x). Similarly, one proves that sup,g-S(y) =
S(x).

Remarks 1.3. Note that the proof of 1.2 remains valid if the hypotheses
on E, F, S and # are weakened as follows:

(1) £ may be assumed to be a lattice only, F to be a locally solid lattice,
H to be a subset of £. The class & can be replaced by the class .# of all nets
of isotone maps of E into F. Moreover, S: F — F need only be a lattice
homomorphism (see also [2]).

(1i) The proof of 1.2 still holds if we replace the class -# by the class of
all nets (7)) of linear operators from £ into F such that

li.p} (T{x))- =20 forall x =0(xekE).

Indeed, the mapping 7 defined in 1.2 remains positive under this assumption.

(ii1) Still another generalization of the corollary can be obtained by
weakening the topological hypotheses on F. It is not hard to show that one
can derive Korovkin theorems with respect to order-convergence (as for
instance convergence almost everywhere on function spaces) and relatively
uniform convergence from Lemma 1.1 by similar methods as in 1.2 [1, 2, 11].

For reasons of conciseness we shall stick to our initial assumptions in
Notations and Definitions neglecting the various modifications of Korovkin
type theorems mentioned above. Since HZ:C HZ1 for any two subclasses
T, ., T, C 7 satisfying 7, C.7, we conclude from 1.2:

A(H)CHSCHZ CH?*  and o4(H)C HZC H,- C HY".

In the next section we shall see that we do have equality in many cases of
practical interest.

2. EQUIVALENT CHARACTERIZATIONS OF SHADOWS

The general assumptions for this section are those of Notations and
Definitions.

THEOREM 2.1. If the positive linear forms on E separate points, then
H(H) == HZ. Moreover, if H has a countable algebraic basis and the topology
on F is metrizable, then the (H, S)-affine elements also coincide with the
sequential Korovkin closure HZ . The same is true for HZ< (resp. HJ) if the
positive continuous linear forms on E separate points.
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Proof. (a) Let us first show that the respective shadows are contained in
H,:={xeE:H,#* @ s H*. To prove this, let xe E\H,. For each
A € B (H) define 4° to be the convex hull of {| 4 |- a: ae A}, where | 4 | is
the cardinal number of A4. Since x ¢ H, , either x or —Xx 1s not contained in
A¢ — E_. W.lo.g. we may assume that x ¢ A° — E, (otherwise we replace
x by —x). From the finiteness of A it now follows immediately that A€ is
o E, E*)-compact, where E* is the algebraic dual of E. Moreover, £, is
o E, E*)-closed since the positive linear forms on E separate points (for a
proof, see [2,4.5]), and so is 4¢ — E,_. Consequently, there is a convex
o(E, E*)-neighborhood U of x such that U N (4¢ — E£,) = 2. A well-known
separation theorem [5, p. 82] now yields the existence of a positive linear
form w, on E satisfying 0 = w (x) > sup w (A° — E.). Define T, : E—>F
by setting

Tz)=8@E)+4- Z:éi)) * Vo where y, e F.\{0} is fixed.

Then we obtain im ;g ) T4(y) = S(y)forall y € H.
Indeed, if 4 € PB,(H)1s such that y, —y € A, it follows that

Lo AP ()
— ) wAlA4*y) T ) - <]_ .
S(.}) [ \A \ 'CUA(X) Yo == S(}) ' A i S0

On the other hand, (74(x)) ses, () 18 divergent. Hence x ¢ HZ.

If the continuous positive linear forms on E separate points it is possible
to substitute the topology o(E, E*) by o E, E’), where E’ is the topological
dual of E. It follows that w , and hence T, will be continuous. Consequently,
x ¢ HZ in this case.

Finally, if H has a countable algebraic basis B, then we may use the
countable subnet (7,) 4e5,(m) » Which can be rewritten as a sequence, to prove
the assertion for the sequential Korovkin closures HZ<" and HZ", respectively.

(b) Thus, to complete the proof, it suffices to show that each element
x € H, which is contained in the Korovkin closure HZ (resp. HZ', HZ+', HZ-)
is (H, S)-affine. Since this is obviously true for x € H, we may assume that
x e (Hy N HZ)\H. Choose an element y, € H®, and note that
0 x —yoe HZ n E, . Using a result in [2, 4.3], there is a net (L;);e; of
positive endomorphisms on E (resp. a sequence of positive endomorphisms,
a net of continuous positive endomorphisms, a sequence of continuous
positive endomorphisms) satisfying

ligl Liy) =1, forall ye H
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and
(Lx —yg)iielCH,_, + E, == H, — y, + E,.

Setting 7, :— S+ L, for each i € I we deduce

hgll T4y)= S») forall yeH.

Since x ~ y, € HZ (resp. x — vye HY', x — yye HZe, x — yoe HZY) it
follows that lim,.; T,(x — y,) == S(x) — S(»,). Moreover, for each 7 € [ there
is an element y; & f, satisfying T.(x — py) = S(¥;) — S(yo) = S(x) — S(y).
Since F'is a HausdorfT topological vector lattice this implies that lim,.,; S(y,) =
S(x) and, consequently, lim,.z S()) = S(x). Replacing x by --x we conclude
lim, g S(») == S(x) which proves that x is (H, $)-affine.

Remarks 2.2. (i) If £ is a locally convex Hausdorfl topological vector
lattice then the continuous positive linear forms separate points. Hence in
this case we have ./(H) == HL = HZ-.

(i) An example of Scheffold [9] shows that the equality HZ = HZ
fails in general. In view of the applications H will often be finite dimensional
or at most of countable algebraic dimension. By 2.1 the sets H? and HZ
coincide under this assumption. Moreover, in the setting of Scheffold’s
example, HZ = H? even if H is only separable [2, 4.6].

(i) The characterization of the (H, S)-affine elements is not difficult,
in general: If £ is an M-space there are rather intuitive equivalent descrip-
tions of the (#, S)-affine elements. Even, however, if £ is not an M-space the
following proposition may be helpful in determining the (H,S)-affine
elements.

PROPOSITION 2.3. Suppose that F is « locally convex Hausdorff vector
lattice. Then an element x € E is (H, S)-affine iff lim,_g I(S(y)) = I(S(x)) ==
lim,g= ((S(y)) for all 1 € F.\°, where F.° is the polar of the positice cone F in
Fo.

Proof. Since, for cach x € E, (S(¥)),err, » (S(¥)),eg= are monotonic nets,
these nets converge in F iff they are weakly convergent, and the respective
limits coincide [5, p. 91].

ExampLE 2.4. Let pe|[l, -+ o[, and suppose that (X, ¥, ) is a finite
measure space. Then £ = F = L?(u) is super Dedekind complete in the
terminology of Luxemburg and Zaanen [6, p. 126]. Hence, for each f'e L?(u),

3 F,° is the cone of all continuous positive linear forms on F.
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f:=inf A, and Ji=sup H’ are well-defined elements of L”(u) whenever
H;+# @ and H’ 4 . If I is the identity operator on L?(u) we obtain
H? =H? — o(H)={feL"(w): H; # @, H # ¢ and f = I

Proof. 1t remains to show the last equality. To do this we use Proposition
2.3: Since each continuous positive linear form on L”(x) can be represented
by an element of L2(u), , where 1/g + |/p = 1, g € R, according to the Riesz
representation theorem, we obtain:

Sh(H) = :fe Lo(p) : Iinf f hg dp = ’sEu}R hg dp forall ge Lq(‘u)_%:.

heHy

From the order-separability of L2(u) it now follows that there is a decreasing
sequence (h,) in I, such that inf,.y h, = f(f€ E, H; # ). Using the fact
that 1 = fforall h € H, we conclude from this: ( g € L7(u), arbitrary)

‘fg du = ,i,BNf Jﬂ h,g du = inf j hg dp > ffg du, 1.e.,

heH,

Jfg du = inf | hg du, and, similarly, ffg du = sup J hg du.
hEﬂf ¥ hEHf

Consequently, fis (H, I-affine iff H,; + @, H' #+ = and
|‘ (f—_f) gdu = 0 for all g e LYu)

from which the assertion follows.

Remark 2.5. For each ze E, let 5: E.°— R be defined by (1) = 1(2)
(1€ E.Y%. Then E: = {#: ze E} is a linear lattice of continuous affine func-
tions on £." under pointwise order. Proposition 2.3 shows that .Z;(H) is the
set of all x € E satisfying H, + @, H* #+ @ and

sup{ 7 : v € H*} = & = inf{§ : y € H,} pointwise on S*(F."),

where S* is the adjoint operator of S.
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